Sunday, 17 March 2013

Differential and Linear Cryptanalysis


3.4. Differential and Linear Cryptanalysis

For most of its life, the prime concern with DES has been its vulnerability to brute-force attack because of its relatively short (56 bits) key length. However, there has also been interest in finding cryptanalytic attacks on DES. With the increasing popularity of block ciphers with longer key lengths, including triple DES, brute-force attacks have become increasingly impractical. Thus, there has been increased emphasis on cryptanalytic attacks on DES and other symmetric block ciphers. In this section, we provide a brief overview of the two most powerful and promising approaches: differential cryptanalysis and linear cryptanalysis.

Differential Cryptanalysis

One of the most significant advances in cryptanalysis in recent years is differential cryptanalysis. In this section, we discuss the technique and its applicability to DES.
History
Differential cryptanalysis was not reported in the open literature until 1990. The first published effort appears to have been the cryptanalysis of a block cipher called FEAL by Murphy [MURP90]. This was followed by a number of papers by Biham and Shamir, who demonstrated this form of attack on a variety of encryption algorithms and hash functions; their results are summarized in [BIHA93].
The most publicized results for this approach have been those that have application to DES. Differential cryptanalysis is the first published attack that is capable of breaking DES in less than 255 complexity. The scheme, as reported in [BIHA93], can successfully cryptanalyze DES with an effort on the order of 247 encryptions, requiring 247 chosen plaintexts. Although 247 is certainly significantly less than 255 the need for the adversary to find 247 chosen plaintexts makes this attack of only theoretical interest.
Although differential cryptanalysis is a powerful tool, it does not do very well against DES. The reason, according to a member of the IBM team that designed DES [COPP94], is that differential cryptanalysis was known to the team as early as 1974. The need to strengthen DES against attacks using differential cryptanalysis played a large part in the design of the S-boxes and the permutation P. As evidence of the impact of these changes, consider these comparable results reported in [BIHA93]. Differential cryptanalysis of an eight-round LUCIFER algorithm requires only 256 chosen plaintexts, whereas an attack on an eight-round version of DES requires 214 chosen plaintexts.





No comments:

Post a Comment